

RN-003-1015041 Seat No. _____

B. Sc. (Sem. V) (CBCS) (W.I.F. - 2016) Examination February - 2019

S - 501 : Statistics

(Computational Techniques & R-Language) (New Course)

> Faculty Code: 003 Subject Code: 1015041

Time : $2\frac{1}{2}$ H	ours] [Total Marks : 70
Instructions	 (1) All questions are compulsory. (2) All questions carry equal marks. (3) Students can use their own scientific calculator.
1 (A) Give	the answer of following questions:
(1)	Interpolation and extrapolation approaches are interpolation and extrapolation are the parts of analysis.
(2)	The differences between two consecutive dependent variate values are called difference.
(3)	The independent variate values in the interpolation are termed as
(4)	The dependent variate value in interpolation and extrapolation is called
(B) Writ	e any one:
	Prove that $\mu^2 = 1 + \frac{1}{4}\delta^2$
	Prove that $(1+\Delta)(1-\nabla)=1$
, ,	e any one :
(1)	Prove that $\sqrt{1 + \mu^2 \delta^2} = 1 + \frac{\delta^2}{2}$
(2)	Prove that $\frac{\Delta^{m+n}}{E^n} = \Delta^m \nabla^n$
RN-003-101504	1] 1 [Contd

(D) Write any one:

- 5
- (1) Obtain Greagary Newton's backward Interpolation formula.
- (2) Compute f(0.005) and f(0.37) from the following data by using appropriate method.

	х	0	0.10	0.20	0.30	0.40
,	у	1	1.2214	1.4918	1.8221	2.2255

2 (A) Give the answer of following questions:

4

- (1) Newton's formula for advancing differences is also known as _____ forward.
- (2) Newton's method of divided differences takes care of the _____ spaced arguments.
- (3) In Newton's backward formula, the origin is the _____ value of the argument in the series.
- (4) The $(n+1)^{th}$ order finite difference of a n^{th} order polynomial is ______.
- (B) Write any one:

2

- (1) Prove that relation between forward difference and divided deference.
- (2) If $f(x) = x^3 9x^2 + 17x + 6$, compute f(-1,1,2,3).
- (C) Write any one:

3

- (1) Using Lagrange's interpolation formula, find a polynomial which passes from points (0,648), (2,704), (3,729), (6,792).
- (2) Compute $f(\theta)$ for $\theta = 15^{\circ}$ by using Stiriling formula from the following data

Э	10°	12°	14°	16°	18°	20°
v	0.176327	0.212556	0.249328	0.286745	0.324920	0.363970

(D) Write any one:

5

- (1) Obtain Gauss Forward Interpolation formula.
- (2) Obtain Sterling's formula.

3	(A)	Give the answer of following questions:	4
		(1) In Simson's $\frac{1}{3}$ rule, $f(x)$ is a polynomial of	
		(2) In Simpson's $\frac{1}{3}$ rule is applicable when the number of intervals n must be; in other words, the number of ordinates must be	
		(3) In Weddle's rule is applicable when the number of intervals n must be a	
		(4) In Weddle's rule, $f(x)$ is a polynomial of	<u></u> .
	(B)	Write any one:	2
		(1) State Newton-cote's quadrature formula for numerical integration.	
		(2) Evaluate $\int_0^1 x^3 dx$ by Trapezoidal rule with $n = 5$.	
	(C)	Write any one :	3
	(0)	(1) Apply Euler's Maclaurin sum formula to find the	•
		sums $\frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \dots + \frac{1}{20^2}$	
		(2) Use Talyor's series method to solve $\frac{dy}{dx} = x^2 - y$	
		with $y(0) = 1$ at $x = 0.1, 0.2$.	
	(D)	Write any one : (1) Obtain general Quadreture formula.	5
		(2) Given the differential equation $\frac{dy}{dx} = 3x + y^2$, with	
		the initial condition $y = 1$ when $x = 0$, use Picard's method to obtain y for $x = 0.1$ correct to three decimal places.	
4	(A)	Give the answer of following questions:	4
		(1) If $f(a)$ be negative and $f(b)$ be positive then first approximation to the root in Bisection method is $x_1 = $	
		(2) In method of Regula-Falsi method we choose two	
		points x_0 and x_1 such that $f(x_0)$ and $f(x_1)$ are of sings.	
		(3) The method of interation is particularly useful for finding the real root of an equation given in the form of an series.	

		(4)	Newton-Rapsnon method has	
			convergence.	
	(B)	Wri	te any one :	2
		(1)	Obtain Newton's formula for Inverse.	
			1	
		(2)	Evaluate $\frac{1}{\sqrt{23}}$ by using Newton's formula. Correct	
			upto seven decimal places.	
	(C)	Wri	te any one :	3
	(0)		Using Newton-Raphson method, find correct upto	•
		(1)	four decimal places. The root lies between 0 and	
			1 of equation $x^3 - 6x + 4 = 0$	
		(0)	_	
		(2)	Find by the iteration method, the root near 3.8	
			of equation $2x - \log_{10} x = 7$. Correct upto four	
			decimal places.	
	(D)		te any one :	5
		(1)	Explain successive approximation method.	
		(2)	Explain Bisection method.	
_	(4)	α.	.1	
5	(A)		e the answer of following question:	4
		(1)	If $v = c(5,9), t = c(3,4),$ then print $(v\%\%t)$.	
			Output is	
		(2)	If $v1 = c(3, -4, 1), t1 = c(2, 5, 0)$, then print($v1 \& t1$).	
		` '	Output is	
			_	
		(3)	If $a = c(5.5,6)$, $b = c(3,5)$, then print $(a\%/\% b)$.	
			Output is	
		(4)	If $a1 = 8$, $b1 = 1:12$, then print $(a1\%in\%b1)$.	
		(1)		
	(D)	VX 7	Output is	9
	(B)		te any one:	2
		(1)	Explain relation operators with example in	
		(9)	R-language.	
		(2)	Explain logical operators with example in	
	(0)	VX7 -0	R-language.	3
	(C)	(1)	te any one : Explain making Data Frame objects and convert	3
		(1)	it in Matrix object with example in R-language.	
		(2)	Explain create Histogram with example in	
		(2)	R-language.	
	(D)	Wri	te any one :	5
	(D)	(1)	Explain making Matrix object and convert it in	v
		(1)	Data frame with example.	
		(2)	Explain the Student's T-test in R language.	
		(-)	in a sound of the stangards.	